Compare commits

...

10 Commits

Author SHA1 Message Date
Gregory Ballantine
a6f6994c2b Added runtime req for iperf3
Some checks failed
ci/woodpecker/push/woodpecker Pipeline failed
2024-01-28 19:59:31 -05:00
a4e0f27ddb Version bump to v0.4.0
All checks were successful
ci/woodpecker/push/woodpecker Pipeline was successful
ci/woodpecker/tag/woodpecker Pipeline was successful
2022-09-05 13:06:02 -04:00
f9de9ef93c Renamed the 'ping' test to the 'latency' test to more accurately reflect the test; Added the '-i' flag to the jitter and latency tests to set the ping interval timing
All checks were successful
ci/woodpecker/push/woodpecker Pipeline was successful
2022-09-05 13:05:32 -04:00
3169c11cc5 Version bump to v0.3.3
All checks were successful
ci/woodpecker/push/woodpecker Pipeline was successful
ci/woodpecker/tag/woodpecker Pipeline was successful
2022-09-05 12:31:47 -04:00
d4d3e37e8d Completed the network bandwidth test function using iperf3; adjusted Cargo.toml a bit to allow patch updates for dependencies
All checks were successful
ci/woodpecker/push/woodpecker Pipeline was successful
2022-09-05 12:31:18 -04:00
7b7150886a Made the Steam game download function work for both Windows and Linux
All checks were successful
ci/woodpecker/push/woodpecker Pipeline was successful
2022-08-22 13:47:49 -04:00
4aa3eddc91 Added scaffolding for a few game benchmarks - they currently just make sure the game is installed via Steam, nothing else
All checks were successful
ci/woodpecker/push/woodpecker Pipeline was successful
2022-08-22 13:45:16 -04:00
8a7d8c1860 Version bump to v0.3.2
All checks were successful
ci/woodpecker/push/woodpecker Pipeline was successful
ci/woodpecker/tag/woodpecker Pipeline was successful
2022-08-17 18:49:12 -04:00
39ce86d2c3 Fixed the network ping and jitter tests to run on Windows
All checks were successful
ci/woodpecker/push/woodpecker Pipeline was successful
2022-08-17 18:48:07 -04:00
88be1ad2ba Added the scaffolding for the jitter test. Now just need to perform the proper calculations.
All checks were successful
ci/woodpecker/push/woodpecker Pipeline was successful
2022-08-17 18:39:53 -04:00
6 changed files with 171 additions and 44 deletions

View File

@ -1,7 +1,7 @@
[package]
name = "hardware-tests"
description = "Bit Goblin PC hardware test suite."
version = "0.3.1"
version = "0.4.0"
edition = "2021"
readme = "README.md"
license = "BSD 2-Clause"
@ -12,9 +12,9 @@ name = "bgbench"
path = "src/main.rs"
[dependencies]
chrono = "0.4.20"
clap = { version = "3.2.16", features = ["derive"] }
sysinfo = "0.25.1"
chrono = "0.4"
clap = { version = "3.2", features = ["derive"] }
sysinfo = "0.25"
[package.metadata.deb]
depends = "fio"

View File

@ -13,7 +13,8 @@ Currently there is no installation method other than downloading the provided re
Simply run the tool with `./bgbench` and you'll be presented with the available subcommands.
### Runtime requirements:
* disk - requires `fio`.
* `disk` - requires `fio`.
* `network bandwidth` - requires `iperf3`
## Building

36
src/benchmarks/games.rs Normal file
View File

@ -0,0 +1,36 @@
use std::process::Command;
pub fn run_civ6_ai_benchmark() {
// make sure CS:GO is installed via Steam
download_game_steam(289070);
}
// run the CS:GO benchmark (using benchmark file from PTS)
pub fn run_csgo_benchmark() {
// make sure CS:GO is installed via Steam
download_game_steam(730);
}
pub fn run_demd_benchmark() {
// make sure CS:GO is installed via Steam
download_game_steam(337000);
}
fn download_game_steam(game_id: u32) {
let mut steam_path = "steam";
if cfg!(windows) {
steam_path = "C:\\Program Files (x86)\\Steam\\steam.exe";
}
// first we need to make sure CS:GO is installed via Steam
let install_output = Command::new(steam_path)
.arg(format!("steam://install/{}", game_id))
.output()
.expect("Failed to execute command");
// check that the command succeeded
assert!(install_output.status.success());
// print the test's output
println!("{}", String::from_utf8_lossy(&install_output.stdout));
}

View File

@ -1,2 +1,3 @@
pub mod disk;
pub mod games;
pub mod network;

View File

@ -1,16 +1,61 @@
use chrono::prelude::*;
use std::{fs,process};
use std::process;
use crate::text;
// ping a host
pub fn ping_host(address: &str, count: &u16) {
pub fn latency_test(address: &str, count: &u16, interval: &u16) {
println!("Pinging host {}, {} times.", address, count);
// if we're on Windows we need to use the -n flag for ping counts
let mut count_arg = "-c";
if cfg!(windows) {
count_arg = "-n";
}
// convert the ping interval to seconds
let interval_secs = *interval as f64 / 1000 as f64;
// run the ping command
let output = process::Command::new("ping")
.arg(address)
.arg(format!("-c {}", count))
.arg(count_arg)
.arg(format!("{}", count))
.arg("-i")
.arg(format!("{}", interval_secs))
.output()
.expect("Failed to execute command");
// check that the command succeeded
assert!(output.status.success());
// grab the ping results from stdout
let results_raw = &String::from_utf8_lossy(&output.stdout);
let results = text::format::trim_output(results_raw, 4);
for line in results {
println!("{}", line);
}
}
// network jitter test
pub fn jitter_test(address: &str, count: &u16, interval: &u16) {
println!("Pinging host {}, {} times to determine network jitter.", address, count);
// if we're on Windows we need to use the -n flag for ping counts
let mut count_arg = "-c";
if cfg!(windows) {
count_arg = "-n";
}
// convert the ping interval to seconds
let interval_secs = *interval as f64 / 1000 as f64;
// run the ping command
let output = process::Command::new("ping")
.arg(address)
.arg(count_arg)
.arg(format!("{}", count))
.arg("-i")
.arg(format!("{}", interval_secs))
.output()
.expect("Failed to execute command");
@ -26,23 +71,20 @@ pub fn ping_host(address: &str, count: &u16) {
}
// timed file copy test to guage bandwidth speeds
pub fn bandwidth_test(download: &str, output: &str) {
println!("Testing network bandwidth by downloading {}.", download);
pub fn bandwidth_test(host: &str) {
println!("Testing network bandwidth using iperf; connecting to {}.", host);
println!("{}", host);
// get start time so we can track how long it takes to complete
let start_time = Utc::now();
let output = process::Command::new("iperf3")
.arg("-c")
.arg(host)
.output()
.expect("Failed to execute command");
// do the download
// check that the command succeeded
assert!(output.status.success());
// get finish time
let finish_time = Utc::now();
// compute time to complete
let comp_time = finish_time - start_time;
println!("{}", comp_time.num_milliseconds());
// clean up the test file
match fs::remove_file(output) {
Ok(()) => println!("Cleaning up..."),
Err(e) => println!("There was a problem during cleanup - {}", e),
}
// grab and print the command's results
let results_raw = &String::from_utf8_lossy(&output.stdout);
println!("{}", results_raw);
}

View File

@ -23,6 +23,9 @@ enum Commands {
// disk benchmarks subcommand
#[clap(name = "disk", about = "Hard drive and SSD benchmarks.")]
Disk(Disk),
// games benchmarks subcommand
#[clap(name = "games", about = "Benchmark your system with games.")]
Games(Games),
// network benchmarks subcommand
#[clap(name = "network", about = "Test various aspects of your network.")]
Net(Net),
@ -91,6 +94,27 @@ enum DiskCommands {
},
}
#[derive(Parser)]
struct Games {
#[structopt(subcommand)]
games_commands: GamesCommands,
}
#[derive(Subcommand)]
enum GamesCommands {
// Civilization 6 AI benchmark subcommand
#[clap(name = "civ6_ai", about = "Run the Civilization 6 AI benchmark via Steam.")]
Civ6AI {},
// CS:GO benchmark subcommand
#[clap(name = "csgo", about = "Run the CS:GO game benchmark via Steam.")]
CSGO {},
// Deus Ex: Mankind Divided benchmark subcommand
#[clap(name = "demd", about = "Run the Deus Ex: Mankind Divided game benchmark via Steam.")]
DEMD {},
}
#[derive(Parser)]
struct Net {
#[structopt(subcommand)]
@ -99,22 +123,33 @@ struct Net {
#[derive(Subcommand)]
enum NetCommands {
// ping subcommand
#[clap(name = "ping", about = "Ping a host to determine network latency.")]
Ping {
#[clap(short = 'a', long, default_value_t = String::from("8.8.8.8"))]
address: String,
#[clap(short = 'c', long, default_value_t = 30)]
count: u16,
// bandwidth test subcommand
#[clap(name = "bandwidth", about = "Uses iperf to test network bandwidth.")]
Bandwidth {
#[clap(short = 'a', long, required = true)]
host: String,
},
// bandwidth test subcommand
#[clap(name = "bandwidth", about = "Downloads a remote file to determine network bandwidth.")]
Bandwidth {
#[clap(short = 'd', long, default_value_t = String::from("https://www.bitgoblin.tech/hardware-tests/export-01.mp4"))]
download: String,
#[clap(short = 't', long, default_value_t = String::from("/tmp/bw-test.tmp"))]
output: String,
// jitter subcommand
#[clap(name = "jitter", about = "Ping a host to determine network jitter.")]
Jitter {
#[clap(short = 'a', long, default_value_t = String::from("8.8.8.8"))]
address: String,
#[clap(short = 'c', long, default_value_t = 100)]
count: u16,
#[clap(short = 'i', long, default_value_t = 1000)]
interval: u16,
},
// latency subcommand
#[clap(name = "latency", about = "Ping a host to determine network latency.")]
Latency {
#[clap(short = 'a', long, default_value_t = String::from("8.8.8.8"))]
address: String,
#[clap(short = 'c', long, default_value_t = 100)]
count: u16,
#[clap(short = 'i', long, default_value_t = 1000)]
interval: u16,
},
}
@ -152,19 +187,31 @@ fn main() {
benchmarks::disk::disk_write_rand_test(tempfile, size);
}
},
}
},
Commands::Games(args) => match &args.games_commands {
GamesCommands::Civ6AI {} => benchmarks::games::run_civ6_ai_benchmark(),
GamesCommands::CSGO {} => benchmarks::games::run_csgo_benchmark(),
GamesCommands::DEMD {} => benchmarks::games::run_demd_benchmark(),
},
Commands::Net(args) => match &args.net_commands {
NetCommands::Ping { address, count } => {
NetCommands::Bandwidth { host } => {
for i in 0..cli.loopcount {
println!("Test run number {}.", i + 1);
benchmarks::network::ping_host(address, count);
benchmarks::network::bandwidth_test(host);
}
},
NetCommands::Bandwidth { download, output } => {
NetCommands::Jitter { address, count, interval } => {
for i in 0..cli.loopcount {
println!("Test run number {}.", i + 1);
benchmarks::network::bandwidth_test(download, output);
benchmarks::network::jitter_test(address, count, interval);
}
},
NetCommands::Latency { address, count, interval } => {
for i in 0..cli.loopcount {
println!("Test run number {}.", i + 1);
benchmarks::network::latency_test(address, count, interval);
}
},
},