Bones/node_modules/zone.js/lib/zone.ts

1082 lines
40 KiB
TypeScript
Raw Normal View History

2017-05-17 13:45:25 -04:00
/**
* Zone is a mechanism for intercepting and keeping track of asynchronous work.
*
* A Zone is a global object which is configured with rules about how to intercept and keep track
* of the asynchronous callbacks. Zone has these responsibilities:
*
* 1. Intercept asynchronous task scheduling
* 2. Wrap callbacks for error-handling and zone tracking across async operations.
* 3. Provide a way to attach data to zones
* 4. Provide a context specific last frame error handling
* 5. (Intercept blocking methods)
*
* A zone by itself does not do anything, instead it relies on some other code to route existing
* platform API through it. (The zone library ships with code which monkey patches all of the
* browsers's asynchronous API and redirects them through the zone for interception.)
*
* In its simplest form a zone allows one to intercept the scheduling and calling of asynchronous
* operations, and execute additional code before as well as after the asynchronous task. The rules
* of interception are configured using [ZoneConfig]. There can be many different zone instances in
* a system, but only one zone is active at any given time which can be retrieved using
* [Zone#current].
*
*
*
* ## Callback Wrapping
*
* An important aspect of the zones is that they should persist across asynchronous operations. To
* achieve this, when a future work is scheduled through async API, it is necessary to capture, and
* subsequently restore the current zone. For example if a code is running in zone `b` and it
* invokes `setTimeout` to scheduleTask work later, the `setTimeout` method needs to 1) capture the
* current zone and 2) wrap the `wrapCallback` in code which will restore the current zone `b` once
* the wrapCallback executes. In this way the rules which govern the current code are preserved in
* all future asynchronous tasks. There could be a different zone `c` which has different rules and
* is associated with different asynchronous tasks. As these tasks are processed, each asynchronous
* wrapCallback correctly restores the correct zone, as well as preserves the zone for future
* asynchronous callbacks.
*
* Example: Suppose a browser page consist of application code as well as third-party
* advertisement code. (These two code bases are independent, developed by different mutually
* unaware developers.) The application code may be interested in doing global error handling and
* so it configures the `app` zone to send all of the errors to the server for analysis, and then
* executes the application in the `app` zone. The advertising code is interested in the same
* error processing but it needs to send the errors to a different third-party. So it creates the
* `ads` zone with a different error handler. Now both advertising as well as application code
* create many asynchronous operations, but the [Zone] will ensure that all of the asynchronous
* operations created from the application code will execute in `app` zone with its error
* handler and all of the advertisement code will execute in the `ads` zone with its error handler.
* This will not only work for the async operations created directly, but also for all subsequent
* asynchronous operations.
*
* If you think of chain of asynchronous operations as a thread of execution (bit of a stretch)
* then [Zone#current] will act as a thread local variable.
*
*
*
* ## Asynchronous operation scheduling
*
* In addition to wrapping the callbacks to restore the zone, all operations which cause a
* scheduling of work for later are routed through the current zone which is allowed to intercept
* them by adding work before or after the wrapCallback as well as using different means of
* achieving the request. (Useful for unit testing, or tracking of requests). In some instances
* such as `setTimeout` the wrapping of the wrapCallback and scheduling is done in the same
* wrapCallback, but there are other examples such as `Promises` where the `then` wrapCallback is
* wrapped, but the execution of `then` in triggered by `Promise` scheduling `resolve` work.
*
* Fundamentally there are three kinds of tasks which can be scheduled:
*
* 1. [MicroTask] used for doing work right after the current task. This is non-cancelable which is
* guaranteed to run exactly once and immediately.
* 2. [MacroTask] used for doing work later. Such as `setTimeout`. This is typically cancelable
* which is guaranteed to execute at least once after some well understood delay.
* 3. [EventTask] used for listening on some future event. This may execute zero or more times, with
* an unknown delay.
*
* Each asynchronous API is modeled and routed through one of these APIs.
*
*
* ### [MicroTask]
*
* [MicroTask]s represent work which will be done in current VM turn as soon as possible, before VM
* yielding.
*
*
* ### [TimerTask]
*
* [TimerTask]s represents work which will be done after some delay. (Sometimes the delay is
* approximate such as on next available animation frame). Typically these methods include:
* `setTimeout`, `setImmediate`, `setInterval`, `requestAnimationFrame`, and all browser specif
* variants.
*
*
* ### [EventTask]
*
* [EventTask]s represents a request to create a listener on an event. Unlike the other task
* events may never be executed, but typically execute more then once. There is no queue of
* events, rather their callbacks are unpredictable both in order and time.
*
*
* ## Global Error Handling
*
*
* ## Composability
*
* Zones can be composed together through [Zone.fork()]. A child zone may create its own set of
* rules. A child zone is expected to either:
*
* 1. Delegate the interception to a parent zone, and optionally add before and after wrapCallback
* hook.s
* 2) Or process the request itself without delegation.
*
* Composability allows zones to keep their concerns clean. For example a top most zone may chose
* to handle error handling, while child zones may chose to do user action tracking.
*
*
* ## Root Zone
*
* At the start the browser will run in a special root zone, which is configure to behave exactly
* like the platform, making any existing code which is not-zone aware behave as expected. All
* zones are children of the root zone.
*
*/
interface Zone {
/**
*
* @returns {Zone} The parent Zone.
*/
parent: Zone;
/**
* @returns {string} The Zone name (useful for debugging)
*/
name: string;
/**
* Returns a value associated with the `key`.
*
* If the current zone does not have a key, the request is delegated to the parent zone. Use
* [ZoneSpec.properties] to configure the set of properties asseciated with the current zone.
*
* @param key The key to retrieve.
* @returns {any} Tha value for the key, or `undefined` if not found.
*/
get(key: string): any;
/**
* Used to create a child zone.
*
* @param zoneSpec A set of rules which the child zone should follow.
* @returns {Zone} A new child zone.
*/
fork(zoneSpec: ZoneSpec): Zone;
/**
* Wraps a callback function in a new function which will properly restore the current zone upon
* invocation.
*
* The wrapped function will properly forward `this` as well as `arguments` to the `callback`.
*
* Before the function is wrapped the zone can intercept the `callback` by declaring
* [ZoneSpec.onIntercept].
*
* @param callback the function which will be wrapped in the zone.
* @param source A unique debug location of the API being wrapped.
* @returns {function(): *} A function which will invoke the `callback` through [Zone.runGuarded].
*/
wrap(callback: Function, source: string): Function;
/**
* Invokes a function in a given zone.
*
* The invocation of `callback` can be intercepted be declaring [ZoneSpec.onInvoke].
*
* @param callback The function to invoke.
* @param applyThis
* @param applyArgs
* @param source A unique debug location of the API being invoked.
* @returns {any} Value from the `callback` function.
*/
run<T>(callback: Function, applyThis?: any, applyArgs?: any[], source?: string): T;
/**
* Invokes a function in a given zone and catches any exceptions.
*
* Any exceptions thrown will be forwarded to [Zone.HandleError].
*
* The invocation of `callback` can be intercepted be declaring [ZoneSpec.onInvoke]. The
* handling of exceptions can intercepted by declaring [ZoneSpec.handleError].
*
* @param callback The function to invoke.
* @param applyThis
* @param applyArgs
* @param source A unique debug location of the API being invoked.
* @returns {any} Value from the `callback` function.
*/
runGuarded<T>(callback: Function, applyThis?: any, applyArgs?: any[], source?: string): T;
/**
* Execute the Task by restoring the [Zone.currentTask] in the Task's zone.
*
* @param callback
* @param applyThis
* @param applyArgs
* @returns {*}
*/
runTask(task: Task, applyThis?: any, applyArgs?: any): any;
scheduleMicroTask(source: string, callback: Function, data?: TaskData, customSchedule?: (task: Task) => void): MicroTask;
scheduleMacroTask(source: string, callback: Function, data: TaskData, customSchedule: (task: Task) => void, customCancel: (task: Task) => void): MacroTask;
scheduleEventTask(source: string, callback: Function, data: TaskData, customSchedule: (task: Task) => void, customCancel: (task: Task) => void): EventTask;
/**
* Allows the zone to intercept canceling of scheduled Task.
*
* The interception is configured using [ZoneSpec.onCancelTask]. The default canceler invokes
* the [Task.cancelFn].
*
* @param task
* @returns {any}
*/
cancelTask(task: Task): any;
}
interface ZoneType {
/**
* @returns {Zone} Returns the current [Zone]. Returns the current zone. The only way to change
* the current zone is by invoking a run() method, which will update the current zone for the
* duration of the run method callback.
*/
current: Zone;
/**
* @returns {Task} The task associated with the current execution.
*/
currentTask: Task;
}
/**
* Provides a way to configure the interception of zone events.
*
* Only the `name` property is required (all other are optional).
*/
interface ZoneSpec {
/**
* The name of the zone. Usefull when debugging Zones.
*/
name: string;
/**
* A set of properties to be associated with Zone. Use [Zone.get] to retrive them.
*/
properties?: {[key: string]: any};
/**
* Allows the interception of zone forking.
*
* When the zone is being forked, the request is forwarded to this method for interception.
*
* @param parentZoneDelegate Dalegate which performs the parent [ZoneSpec] operation.
* @param currentZone The current [Zone] where the current interceptor has beed declared.
* @param targetZone The [Zone] which originally received the request.
* @param zoneSpec The argument passed into the `fork` method.
*/
onFork?: (parentZoneDelegate: ZoneDelegate, currentZone: Zone, targetZone: Zone,
zoneSpec: ZoneSpec) => Zone;
/**
* Allows interception of the wrapping of the callback.
*
* @param parentZoneDelegate Dalegate which performs the parent [ZoneSpec] operation.
* @param currentZone The current [Zone] where the current interceptor has beed declared.
* @param targetZone The [Zone] which originally received the request.
* @param delegate The argument passed into the `warp` method.
* @param source The argument passed into the `warp` method.
*/
onIntercept?: (parentZoneDelegate: ZoneDelegate, currentZone: Zone, targetZone: Zone,
delegate: Function, source: string) => Function;
/**
* Allows interception of the callback invocation.
*
* @param parentZoneDelegate Dalegate which performs the parent [ZoneSpec] operation.
* @param currentZone The current [Zone] where the current interceptor has beed declared.
* @param targetZone The [Zone] which originally received the request.
* @param delegate The argument passed into the `run` method.
* @param applyThis The argument passed into the `run` method.
* @param applyArgs The argument passed into the `run` method.
* @param source The argument passed into the `run` method.
*/
onInvoke?: (parentZoneDelegate: ZoneDelegate, currentZone: Zone, targetZone: Zone,
delegate: Function, applyThis: any, applyArgs: any[], source: string) => any;
/**
* Allows interception of the error handling.
*
* @param parentZoneDelegate Dalegate which performs the parent [ZoneSpec] operation.
* @param currentZone The current [Zone] where the current interceptor has beed declared.
* @param targetZone The [Zone] which originally received the request.
* @param error The argument passed into the `handleError` method.
*/
onHandleError?: (parentZoneDelegate: ZoneDelegate, currentZone: Zone, targetZone: Zone,
error: any) => boolean;
/**
* Allows interception of task scheduling.
*
* @param parentZoneDelegate Dalegate which performs the parent [ZoneSpec] operation.
* @param currentZone The current [Zone] where the current interceptor has beed declared.
* @param targetZone The [Zone] which originally received the request.
* @param task The argument passed into the `scheduleTask` method.
*/
onScheduleTask?: (parentZoneDelegate: ZoneDelegate, currentZone: Zone, targetZone: Zone,
task: Task) => Task;
onInvokeTask?: (parentZoneDelegate: ZoneDelegate, currentZone: Zone, targetZone: Zone,
task: Task, applyThis: any, applyArgs: any) => any;
/**
* Allows interception of task cancalation.
*
* @param parentZoneDelegate Dalegate which performs the parent [ZoneSpec] operation.
* @param currentZone The current [Zone] where the current interceptor has beed declared.
* @param targetZone The [Zone] which originally received the request.
* @param task The argument passed into the `cancelTask` method.
*/
onCancelTask?: (parentZoneDelegate: ZoneDelegate, currentZone: Zone, targetZone: Zone,
task: Task) => any;
/**
* Notifies of changes to the task queue empty status.
*
* @param parentZoneDelegate Dalegate which performs the parent [ZoneSpec] operation.
* @param currentZone The current [Zone] where the current interceptor has beed declared.
* @param targetZone The [Zone] which originally received the request.
* @param isEmpty
*/
onHasTask?: (delegate: ZoneDelegate, current: Zone, target: Zone,
hasTaskState: HasTaskState) => void;
};
/**
* A delegate when intercepting zone operations.
*
* A ZoneDelegate is needed because a child zone can't simply invoke a method on a parent zone. For
* example a child zone wrap can't just call parent zone wrap. Doing so would create a callback
* which is bound to the parent zone. What we are interested is intercepting the callback before it
* is bound to any zone. Furthermore, we also need to pass the targetZone (zone which received the
* original request) to the delegate.
*
* The ZoneDelegate methods mirror those of Zone with an addition of extra targetZone argument in
* the method signature. (The original Zone which received the request.) Some methods are renamed
* to prevent confusion, because they have slightly different semantics and arguments.
*
* - `wrap` => `intercept`: The `wrap` method delegates to `intercept`. The `wrap` method returns
* a callback which will run in a given zone, where as intercept allows wrapping the callback
* so that additional code can be run before and after, but does not associated the callback
* with the zone.
* - `run` => `invoke`: The `run` method delegates to `invoke` to perform the actual execution of
* the callback. The `run` method switches to new zone; saves and restores the `Zone.current`;
* and optionally performs error handling. The invoke is not responsible for error handling,
* or zone management.
*
* Not every method is usually overwritten in the child zone, for this reason the ZoneDelegate
* stores the closest zone which overwrites this behavior along with the closest ZoneSpec.
*
* NOTE: We have tried to make this API analogous to Event bubbling with target and current
* properties.
*
* Note: The ZoneDelegate treats ZoneSpec as class. This allows the ZoneSpec to use its `this` to
* store internal state.
*/
interface ZoneDelegate {
zone: Zone;
fork(targetZone: Zone, zoneSpec: ZoneSpec): Zone;
intercept(targetZone: Zone, callback: Function, source: string): Function;
invoke(targetZone: Zone, callback: Function, applyThis: any, applyArgs: any[], source: string): any;
handleError(targetZone: Zone, error: any): boolean;
scheduleTask(targetZone: Zone, task: Task): Task;
invokeTask(targetZone: Zone, task: Task, applyThis: any, applyArgs: any): any;
cancelTask(targetZone: Zone, task: Task): any;
hasTask(targetZone: Zone, isEmpty: HasTaskState): void;
}
type HasTaskState = {
microTask: boolean,
macroTask: boolean,
eventTask: boolean,
change: TaskType
};
/**
* Task type: `microTask`, `macroTask`, `eventTask`.
*/
type TaskType = string; /* TS v1.8 => "microTask" | "macroTask" | "eventTask" */;
/**
*/
interface TaskData {
/**
* A periodic [MacroTask] is such which get automatically rescheduled after it is executed.
*/
isPeriodic?: boolean;
/**
* Delay in milliseconds when the Task will run.
*/
delay?: number;
}
/**
* Represents work which is executed with a clean stack.
*
* Tasks are used in Zones to mark work which is performed on clean stack frame. There are three
* kinds of task. [MicroTask], [MacroTask], and [EventTask].
*
* A JS VM can be modeled as a [MicroTask] queue, [MacroTask] queue, and [EventTask] set.
*
* - [MicroTask] queue represents a set of tasks which are executing right after the current stack
* frame becomes clean and before a VM yield. All [MicroTask]s execute in order of insertion
* before VM yield and the next [MacroTask] is executed.
* - [MacroTask] queue represents a set of tasks which are executed one at a time after each VM
* yield. The queue is order by time, and insertions can happen in any location.
* - [EventTask] is a set of tasks which can at any time be inserted to the head of the [MacroTask]
* queue. This happens when the event fires.
*
*/
interface Task {
/**
* Task type: `microTask`, `macroTask`, `eventTask`.
*/
type: TaskType;
/**
* Debug string representing the API which requested the scheduling of the task.
*/
source: string;
/**
* The Function to be used by the VM on entering the [Task]. This function will delegate to
* [Zone.runTask] and delegate to `callback`.
*/
invoke: Function;
/**
* Function which needs to be executed by the Task after the [Zone.currentTask] has been set to
* the current task.
*/
callback: Function;
/**
* Task specific options associated with the current task. This is passed to the `scheduleFn`.
*/
data: TaskData;
/**
* Represents the default work which needs to be done to schedule the Task by the VM.
*
* A zone may chose to intercept this function and perform its own scheduling.
*/
scheduleFn: (task: Task) => void;
/**
* Represents the default work which needs to be done to un-schedule the Task from the VM. Not all
* Tasks are cancelable, and therefore this method is optional.
*
* A zone may chose to intercept this function and perform its own scheduling.
*/
cancelFn: (task: Task) => void;
/**
* @type {Zone} The zone which will be used to invoke the `callback`. The Zone is captured
* at the time of Task creation.
*/
zone: Zone;
}
interface MicroTask extends Task {
/* TS v1.8 => type: 'microTask'; */
}
interface MacroTask extends Task {
/* TS v1.8 => type: 'macroTask'; */
}
interface EventTask extends Task {
/* TS v1.8 => type: 'eventTask'; */
}
/** @internal */
type AmbientZone = Zone;
/** @internal */
type AmbientZoneDelegate = ZoneDelegate;
var Zone: ZoneType = (function(global) {
class Zone implements AmbientZone {
static __symbol__: (name: string) => string = __symbol__;
static get current(): AmbientZone { return _currentZone; };
static get currentTask(): Task { return _currentTask; };
public get parent(): AmbientZone { return this._parent; };
public get name(): string { return this._name; };
private _parent: Zone;
private _name: string;
private _properties: {[key: string]: any} = null;
private _zoneDelegate: ZoneDelegate;
constructor(parent: Zone, zoneSpec: ZoneSpec)
{
this._parent = parent;
this._name = zoneSpec ? zoneSpec.name || 'unnamed' : '<root>';
this._properties = zoneSpec && zoneSpec.properties || {};
this._zoneDelegate = new ZoneDelegate(this, this._parent && this._parent._zoneDelegate, zoneSpec);
}
public get(key: string): any {
var current: Zone = this;
while (current) {
if (current._properties.hasOwnProperty(key)) {
return current._properties[key];
}
current = current._parent;
}
}
public fork(zoneSpec: ZoneSpec): AmbientZone {
if (!zoneSpec) throw new Error('ZoneSpec required!');
return this._zoneDelegate.fork(this, zoneSpec);
}
public wrap(callback: Function, source: string): Function
{
if (typeof callback != 'function') {
throw new Error('Expecting function got: ' + callback);
}
var callback = this._zoneDelegate.intercept(this, callback, source);
var zone: Zone = this;
return function() {
return zone.runGuarded(callback, this, <any>arguments, source);
}
}
public run(callback: Function, applyThis: any = null, applyArgs: any[] = null,
source: string = null)
{
var oldZone = _currentZone;
_currentZone = this;
try {
return this._zoneDelegate.invoke(this, callback, applyThis, applyArgs, source);
} finally {
_currentZone = oldZone;
}
}
public runGuarded(callback: Function, applyThis: any = null, applyArgs: any[] = null,
source: string = null)
{
var oldZone = _currentZone;
_currentZone = this;
try {
try {
return this._zoneDelegate.invoke(this, callback, applyThis, applyArgs, source);
} catch (error) {
if (this._zoneDelegate.handleError(this, error)) {
throw error;
}
}
} finally {
_currentZone = oldZone;
}
}
runTask(task: Task, applyThis?: any, applyArgs?: any) {
if (task.zone != this)
throw new Error('A task can only be run in the zone which created it! (Creation: ' +
task.zone.name + '; Execution: ' + this.name + ')');
var previousTask = _currentTask;
_currentTask = task;
var oldZone = _currentZone;
_currentZone = this;
try {
try {
return this._zoneDelegate.invokeTask(this, task, applyThis, applyArgs);
} catch (error) {
if (this._zoneDelegate.handleError(this, error)) {
throw error;
}
}
} finally {
if (task.type == 'macroTask' && task.data && !task.data.isPeriodic) {
task.cancelFn = null;
}
_currentZone = oldZone;
_currentTask = previousTask;
}
}
scheduleMicroTask(source: string, callback: Function, data?: TaskData,
customSchedule?: (task: Task) => void): MicroTask {
return <MicroTask>this._zoneDelegate.scheduleTask(this,
new ZoneTask('microTask', this, source, callback, data, customSchedule, null));
}
scheduleMacroTask(source: string, callback: Function, data: TaskData,
customSchedule: (task: Task) => void,
customCancel: (task: Task) => void): MacroTask {
return <MacroTask>this._zoneDelegate.scheduleTask(this,
new ZoneTask('macroTask', this, source, callback, data, customSchedule, customCancel));
}
scheduleEventTask(source: string, callback: Function, data: TaskData,
customSchedule: (task: Task) => void,
customCancel: (task: Task) => void): EventTask {
return <EventTask>this._zoneDelegate.scheduleTask(this,
new ZoneTask('eventTask', this, source, callback, data, customSchedule, customCancel));
}
cancelTask(task: Task): any {
var value = this._zoneDelegate.cancelTask(this, task);
task.cancelFn = null;
return value;
}
};
class ZoneDelegate implements AmbientZoneDelegate {
public zone: Zone;
private _taskCounts: {microTask: number, macroTask: number, eventTask: number}
= {microTask: 0, macroTask: 0, eventTask: 0};
private _parentDelegate: ZoneDelegate;
private _forkDlgt: ZoneDelegate;
private _forkZS: ZoneSpec;
private _interceptDlgt: ZoneDelegate;
private _interceptZS: ZoneSpec;
private _invokeDlgt: ZoneDelegate;
private _invokeZS: ZoneSpec;
private _handleErrorDlgt: ZoneDelegate;
private _handleErrorZS: ZoneSpec;
private _scheduleTaskDlgt: ZoneDelegate;
private _scheduleTaskZS: ZoneSpec;
private _invokeTaskDlgt: ZoneDelegate;
private _invokeTaskZS: ZoneSpec;
private _cancelTaskDlgt: ZoneDelegate;
private _cancelTaskZS: ZoneSpec;
private _hasTaskDlgt: ZoneDelegate;
private _hasTaskZS: ZoneSpec;
constructor(zone: Zone, parentDelegate: ZoneDelegate, zoneSpec:ZoneSpec) {
this.zone = zone;
this._parentDelegate = parentDelegate;
this._forkZS = zoneSpec && (zoneSpec && zoneSpec.onFork ? zoneSpec : parentDelegate._forkZS);
this._forkDlgt = zoneSpec && (zoneSpec.onFork ? parentDelegate : parentDelegate._forkDlgt);
this._interceptZS = zoneSpec && (zoneSpec.onIntercept ? zoneSpec : parentDelegate._interceptZS);
this._interceptDlgt = zoneSpec && (zoneSpec.onIntercept ? parentDelegate : parentDelegate._interceptDlgt);
this._invokeZS = zoneSpec && (zoneSpec.onInvoke ? zoneSpec : parentDelegate._invokeZS);
this._invokeDlgt = zoneSpec && (zoneSpec.onInvoke ? parentDelegate : parentDelegate._invokeDlgt);
this._handleErrorZS = zoneSpec && (zoneSpec.onHandleError ? zoneSpec : parentDelegate._handleErrorZS);
this._handleErrorDlgt = zoneSpec && (zoneSpec.onHandleError ? parentDelegate : parentDelegate._handleErrorDlgt);
this._scheduleTaskZS = zoneSpec && (zoneSpec.onScheduleTask ? zoneSpec : parentDelegate._scheduleTaskZS);
this._scheduleTaskDlgt = zoneSpec && (zoneSpec.onScheduleTask ? parentDelegate : parentDelegate._scheduleTaskDlgt);
this._invokeTaskZS = zoneSpec && (zoneSpec.onInvokeTask ? zoneSpec : parentDelegate._invokeTaskZS);
this._invokeTaskDlgt = zoneSpec && (zoneSpec.onInvokeTask ? parentDelegate : parentDelegate._invokeTaskDlgt);
this._cancelTaskZS = zoneSpec && (zoneSpec.onCancelTask ? zoneSpec : parentDelegate._cancelTaskZS);
this._cancelTaskDlgt = zoneSpec && (zoneSpec.onCancelTask ? parentDelegate : parentDelegate._cancelTaskDlgt);
this._hasTaskZS = zoneSpec && (zoneSpec.onHasTask ? zoneSpec : parentDelegate._hasTaskZS);
this._hasTaskDlgt = zoneSpec && (zoneSpec.onHasTask ? parentDelegate : parentDelegate._hasTaskDlgt);
}
fork(targetZone: Zone, zoneSpec: ZoneSpec): AmbientZone {
return this._forkZS
? this._forkZS.onFork(this._forkDlgt, this.zone, targetZone, zoneSpec)
: new Zone(targetZone, zoneSpec);
}
intercept(targetZone: Zone, callback: Function, source: string): Function {
return this._interceptZS
? this._interceptZS.onIntercept(this._interceptDlgt, this.zone, targetZone, callback, source)
: callback;
}
invoke(targetZone: Zone, callback: Function, applyThis: any, applyArgs: any[],
source: string): any
{
return this._invokeZS
? this._invokeZS.onInvoke(this._invokeDlgt, this.zone, targetZone, callback, applyThis, applyArgs, source)
: callback.apply(applyThis, applyArgs);
}
handleError(targetZone: Zone, error: any): boolean {
return this._handleErrorZS
? this._handleErrorZS.onHandleError(this._handleErrorDlgt, this.zone, targetZone, error)
: true;
}
scheduleTask(targetZone: Zone, task: Task): Task {
try {
if (this._scheduleTaskZS) {
return this._scheduleTaskZS.onScheduleTask(this._scheduleTaskDlgt, this.zone, targetZone, task);
} else if (task.scheduleFn) {
task.scheduleFn(task)
} else if (task.type == 'microTask') {
scheduleMicroTask(<MicroTask>task);
} else {
throw new Error('Task is missing scheduleFn.');
}
return task;
} finally {
if (targetZone == this.zone) {
this._updateTaskCount(task.type, 1);
}
}
}
invokeTask(targetZone: Zone, task: Task, applyThis: any, applyArgs: any): any {
try {
return this._invokeTaskZS
? this._invokeTaskZS.onInvokeTask(this._invokeTaskDlgt, this.zone, targetZone, task, applyThis, applyArgs)
: task.callback.apply(applyThis, applyArgs);
} finally {
if (targetZone == this.zone && (task.type != 'eventTask') && !(task.data && task.data.isPeriodic)) {
this._updateTaskCount(task.type, -1);
}
}
}
cancelTask(targetZone: Zone, task: Task): any {
var value;
if (this._cancelTaskZS) {
value = this._cancelTaskZS.onCancelTask(this._cancelTaskDlgt, this.zone, targetZone, task);
} else if (!task.cancelFn) {
throw new Error('Task does not support cancellation, or is already canceled.');
} else {
value = task.cancelFn(task)
}
if (targetZone == this.zone) {
// this should not be in the finally block, because exceptions assume not canceled.
this._updateTaskCount(task.type, -1);
}
return value;
}
hasTask(targetZone: Zone, isEmpty: HasTaskState) {
return this._hasTaskZS && this._hasTaskZS.onHasTask(this._hasTaskDlgt, this.zone, targetZone,
isEmpty);
}
private _updateTaskCount(type: TaskType, count: number) {
var counts = this._taskCounts;
var prev = counts[type];
var next = counts[type] = prev + count;
if (next < 0) {
throw new Error('More tasks executed then were scheduled.');
}
if (prev == 0 || next == 0) {
var isEmpty: HasTaskState = {
microTask: counts.microTask > 0,
macroTask: counts.macroTask > 0,
eventTask: counts.eventTask > 0,
change: type
};
try {
this.hasTask(this.zone, isEmpty);
} finally {
if (this._parentDelegate) {
this._parentDelegate._updateTaskCount(type, count);
}
}
}
}
}
class ZoneTask implements Task {
public type: TaskType;
public source: string;
public invoke: Function;
public callback: Function;
public data: TaskData;
public scheduleFn: (task: Task) => void;
public cancelFn: (task: Task) => void;
public zone: Zone;
constructor(type: TaskType, zone: Zone, source: string, callback: Function, options: TaskData,
scheduleFn: (task: Task) => void, cancelFn:(task: Task) => void)
{
this.type = type;
this.zone = zone;
this.source = source;
this.data = options;
this.scheduleFn = scheduleFn;
this.cancelFn = cancelFn;
this.callback = callback;
var self = this;
this.invoke = function () {
try {
return zone.runTask(self, this, <any>arguments);
} finally {
drainMicroTaskQueue();
}
};
}
}
interface UncaughtPromiseError extends Error {
zone: AmbientZone;
task: Task;
promise: ZoneAwarePromise<any>;
rejection: any;
}
function __symbol__(name: string) { return '__zone_symbol__' + name; };
const symbolSetTimeout = __symbol__('setTimeout');
const symbolPromise = __symbol__('Promise');
const symbolThen = __symbol__('then');
var _currentZone: Zone = new Zone(null, null);
var _currentTask: Task = null;
var _microTaskQueue: Task[] = [];
var _isDrainingMicrotaskQueue: boolean = false;
var _uncaughtPromiseErrors: UncaughtPromiseError[] = [];
var _drainScheduled: boolean = false;
function scheduleQueueDrain() {
if (!_drainScheduled && !_currentTask && _microTaskQueue.length == 0) {
// We are not running in Task, so we need to kickstart the microtask queue.
if (global[symbolPromise]) {
global[symbolPromise].resolve(0)[symbolThen](drainMicroTaskQueue);
} else {
global[symbolSetTimeout](drainMicroTaskQueue, 0);
}
}
}
function scheduleMicroTask(task: MicroTask) {
scheduleQueueDrain();
_microTaskQueue.push(task);
}
function consoleError(e:any) {
var rejection = e && e.rejection;
if (rejection) {
console.error(
'Unhandled Promise rejection:', rejection instanceof Error ? rejection.message : rejection,
'; Zone:', (<Zone>e.zone).name,
'; Task:', e.task && (<Task>e.task).source,
'; Value:', rejection
);
}
console.error(e);
}
function drainMicroTaskQueue() {
if (!_isDrainingMicrotaskQueue) {
_isDrainingMicrotaskQueue = true;
while(_microTaskQueue.length) {
var queue = _microTaskQueue;
_microTaskQueue = [];
for (var i = 0; i < queue.length; i++) {
var task = queue[i];
try {
task.zone.runTask(task, null, null);
} catch (e) {
consoleError(e);
}
}
}
while(_uncaughtPromiseErrors.length) {
var uncaughtPromiseErrors = _uncaughtPromiseErrors;
_uncaughtPromiseErrors = [];
for (var i = 0; i < uncaughtPromiseErrors.length; i++) {
var uncaughtPromiseError: UncaughtPromiseError = uncaughtPromiseErrors[i];
try {
uncaughtPromiseError.zone.runGuarded(() => { throw uncaughtPromiseError; });
} catch (e) {
consoleError(e);
}
}
}
_isDrainingMicrotaskQueue = false;
_drainScheduled = false;
}
}
function isThenable(value: any): boolean {
return value && value.then;
}
function forwardResolution(value: any): any { return value; }
function forwardRejection(rejection: any): any { return ZoneAwarePromise.reject(rejection); }
const symbolState: string = __symbol__('state');
const symbolValue: string = __symbol__('value');
const source: string = 'Promise.then';
const UNRESOLVED = null;
const RESOLVED = true;
const REJECTED = false;
const REJECTED_NO_CATCH = 0;
function makeResolver(promise: ZoneAwarePromise<any>, state: boolean): (value: any) => void {
return (v) => {
resolvePromise(promise, state, v);
// Do not return value or you will break the Promise spec.
}
}
function resolvePromise(promise: ZoneAwarePromise<any>, state: boolean, value: any): ZoneAwarePromise<any> {
if (promise[symbolState] === UNRESOLVED) {
if (value instanceof ZoneAwarePromise && value[symbolState] !== UNRESOLVED) {
clearRejectedNoCatch(<Promise<any>>value);
resolvePromise(promise, value[symbolState], value[symbolValue]);
} else if (isThenable(value)) {
value.then(makeResolver(promise, state), makeResolver(promise, false));
} else {
promise[symbolState] = state;
var queue = promise[symbolValue];
promise[symbolValue] = value;
for (var i = 0; i < queue.length;) {
scheduleResolveOrReject(promise, queue[i++], queue[i++], queue[i++], queue[i++]);
}
if (queue.length == 0 && state == REJECTED) {
promise[symbolState] = REJECTED_NO_CATCH;
try {
throw new Error("Uncaught (in promise): " + value);
} catch (e) {
var error: UncaughtPromiseError = e;
error.rejection = value;
error.promise = promise;
error.zone = Zone.current;
error.task = Zone.currentTask;
_uncaughtPromiseErrors.push(error);
scheduleQueueDrain();
}
}
}
}
// Resolving an already resolved promise is a noop.
return promise;
}
function clearRejectedNoCatch(promise: ZoneAwarePromise<any>): void {
if (promise[symbolState] === REJECTED_NO_CATCH) {
promise[symbolState] = REJECTED;
for (var i = 0; i < _uncaughtPromiseErrors.length; i++) {
if (promise === _uncaughtPromiseErrors[i].promise) {
_uncaughtPromiseErrors.splice(i, 1);
break;
}
}
}
}
function scheduleResolveOrReject<R, U>(promise: ZoneAwarePromise<any>,
zone: AmbientZone,
chainPromise: ZoneAwarePromise<any>,
onFulfilled?: (value: R) => U,
onRejected?: (error: any) => U): void
{
clearRejectedNoCatch(promise);
var delegate = promise[symbolState] ? onFulfilled || forwardResolution: onRejected || forwardRejection;
zone.scheduleMicroTask(source, () => {
try {
resolvePromise(chainPromise, true, zone.run(delegate, null, [promise[symbolValue]]));
} catch (error) {
resolvePromise(chainPromise, false, error);
}
});
}
class ZoneAwarePromise<R> implements Promise<R> {
static resolve<R>(value:R): Promise<R> {
return resolvePromise(<ZoneAwarePromise<R>>new this(null), RESOLVED, value);
}
static reject<U>(error:U): Promise<U> {
return resolvePromise(<ZoneAwarePromise<U>>new this(null), REJECTED, error);
}
static race<R>(values: Thenable<any>[]): Promise<R> {
var resolve: (v: any) => void;
var reject: (v: any) => void;
var promise: any = new this((res, rej) => {resolve = res; reject = rej});
function onResolve(value) { promise && (promise = null || resolve(value)) }
function onReject(error) { promise && (promise = null || reject(error)) }
for(var value of values) {
if (!isThenable(value)) {
value = this.resolve(value);
}
value.then(onResolve, onReject);
}
return promise;
}
static all<R>(values): Promise<R> {
var resolve: (v: any) => void;
var reject: (v: any) => void;
var promise = new this((res, rej) => {resolve = res; reject = rej;});
var resolvedValues = [];
var count = 0;
function onReject(error) { promise && reject(error); promise = null; }
for(var value of values) {
if (!isThenable(value)) {
value = this.resolve(value);
}
value.then(((index) => (value) => {
resolvedValues[index] = value;
count--;
if (promise && !count) {
resolve(resolvedValues);
}
promise == null;
})(count), onReject);
count++;
}
if (!count) resolve(resolvedValues);
return promise;
}
constructor(executor: (resolve : (value?: R | Thenable<R>) => void,
reject: (error?: any) => void) => void) {
var promise: ZoneAwarePromise<R> = this;
promise[symbolState] = UNRESOLVED;
promise[symbolValue] = []; // queue;
try {
executor && executor(makeResolver(promise, RESOLVED), makeResolver(promise, REJECTED));
} catch (e) {
resolvePromise(promise, false, e);
}
}
then<R, U>(onFulfilled?: (value: R) => U | Thenable<U>,
onRejected?: (error: any) => U | Thenable<U>): Promise<R>
{
var chainPromise: Promise<R> = new ZoneAwarePromise(null);
var zone = Zone.current;
if (this[symbolState] == UNRESOLVED ) {
(<any[]>this[symbolValue]).push(zone, chainPromise, onFulfilled, onRejected);
} else {
scheduleResolveOrReject(this, zone, chainPromise, onFulfilled, onRejected);
}
return chainPromise;
}
catch<U>(onRejected?: (error: any) => U | Thenable<U>): Promise<R> {
return this.then(null, onRejected);
}
}
var NativePromise = global[__symbol__('Promise')] = global.Promise;
global.Promise = ZoneAwarePromise;
if (NativePromise) {
var NativePromiseProtototype = NativePromise.prototype;
var NativePromiseThen = NativePromiseProtototype[__symbol__('then')]
= NativePromiseProtototype.then;
NativePromiseProtototype.then = function(onResolve, onReject) {
var nativePromise = this;
return new ZoneAwarePromise((resolve, reject) => {
NativePromiseThen.call(nativePromise, resolve, reject);
}).then(onResolve, onReject);
}
}
return global.Zone = Zone;
})(typeof window == 'undefined' ? global : window);